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ON RELATIVISTIC ANALOGUES OF PARTICLE DYNAMICS" 

L.M. MARKHASHOV 

The construction of the main characteristics of all the 
theoretically admissible generalizations of the classical mechanics of 
one-dimensional motions of a particle is discussed. These 
characteristics are the transformations which connect the inertial frames 
of reference, the variation factors of the geometric scales and the 
clock behaviour in the systems, the laws of velocity transformation, and 
the laws of dynamics. The most interesting result is to discover a 
mechanics which is infinitely close to relativistic mechanics yet 
differs from it in principle. The difference consists in violating the 
parity (scales and clocks which move in exactly opposite directions with 
the same velocity behave differently). 

The particle inertial motions, which are monitored (mainly) by a conformal group, and 
which have for long played a special role in physics, are constructed and studied. The 
problem is solved in the complete statement. It turns out to be necessary here for the order 
of the equations to be the third (and not the second) and for motions with velocity higher 
than that of light to be possible. 

In the Ehrlang program /l/, Klein stated a general idea according to which any geometry 
is a theory of invariants of a transformation group. In physics, this approach is embodied 
in variance principles /2/. The generality of the latter is expressed in particular by the 
fact that, not only the Galilean and the Lorentz, but also any other transformation group of 
space-time can be associated with its own relativity and its own mechanics. This point of 
view is worth using to construct a variety of mechanical models. 

We shall first make some general remarks. 

Transformation groups. For the purpose of theoretical physics, studies have long been 
made into the theory of compressions and deformations of Lie groups and algebras /3-b/. 
Groups of dimensionality 10 are the most interesting. But the problem of describing them is 
so complicated that so far only particular (albeit important) results have been obtained, 
see e.g., /7, 8/. One-dimensional mechanics are controlled by three-parameter groups. To 
construct these mechanics, it is by no means sufficient simply to list the groups, which are 
traditionally restricted by special guides /9/. We gave the requisite fuller description of 
three-dimensional Lie algebras in space of structural constants in /lo/. It enabled us to 
indicate the passages to the limit between algebras and to construct in the simplest way all 
the coordinate realizations of the respective transformation groups. This description will 
also be used in the present paper. Discrete components, in particular, reflections, are not 
included in the groups. 

Inertial FefePenCe systems. We take the following informal definitions which are suf- 
ficient for our purposes below. 

The reference system (~,t} is a physical body which has its own clock at every point. 
Points of the body are arithmetized by the variable x, and clock readings by the variable t. 

Inertial frames of reference are systems which transform from one to another given 
transformation group G : 3’ = cp (5, t, z), t’ = + (z, t, 7). This last definition obviously depends only 
on the group structure. 

Any given group G will obviously transform some family of motions into itself. This 
family is the wider, the great the number of initial conditions that can be present in it. 
The minimal families of this kind, in which the dependence of the law of motion on the initial 
conditions contains the least possible arbitrariness, are the most interesting. Here and 
below, such particle motions are called inertial motions. 

A moving reference body is obviously formed by points which are at rest relative to the 
body. Consequently, the points of a moving body move with respect to a fixed point according 
to the law 'p (z, t, Z) = cona. This family of motions is preserved by the groups. It is 
minimal and therefore describes the inertial motions. 
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In the first part of the paper we consider linear transformations. The reference body 
is therefore a rigid body which moves relative to another rectilinearly and uniformly. 

Invariance of the dynamic Zau. Force in dynamics is a fundamental physicai quantity, 
like time, extension, and mass. For force, as for the other quantities, we have to indicate 
the transformation law when passing from one inertial frame of reference to another (thus, in 
classical particle dynamics, components of a force are preserved under Galilean motions and 
trnslations, and are transformed like particle coordinates in the case of rotations). This 
transforms the kinematic group which controls the law of inertia into an isomorphic dynamic 
group. It is to transformations of the group that the dynamic law must be invariant. 

In each specific case of particle interaction with the surroundings, the force is 
converted into a function of the coordinates, velocity, and time, and the law of dynamics, 
into equations of motion. These do not in general need to be invariant under the kinematic 
group transformations. 

1. Initial reEaLions. CoroZZaries of the homogeneity condition. Let T be 

the geometrical coordinate of the particle in an inertial frame of reference, and t: the time 
measured by clock in the same system. It follows from our assumption that space-tine is 
homogeneous that measurements of the physical variables 5, t are invariant under a change of 
reference origin 5 = 5 $ a,, t' = t + r2, where 7r, 72 are canonical group parameters. Corre- 

sponding to the written transformation we have the operators 

x, = alas, X, = a!dt (1.1) 

(We shall sometimes in future for convenience put x=x1, t = x2.). We include the operators 
(1.1) in the basis of the three-dimensional algebras considered below. Since [X1,X,1 = 0, 
then 

CIZl = cr22 = Cl23 = 0 
0.2) 

The simple groups G1,Ge (motions of the Lobachevskii plane and rotations) do not satisfy 
conditions (1.2) and are excluded from further consideration /lo/. 

Components of the operator X,. The remaining commutation relations in the three-dimen- 
sional algebras are 

[Xi. X,1 =z QdXj. x, = &d/8x, $ &.9/8X$ 

Here and throughout, i,] = 1,2. Summation is performed with respect to repeated indices. 
In the scalar form 

dEildXj = Cj3i +Cj3'Ei (1.3) 
The Jacobi condition is 

C1a3%, - %3%3 'ZO 

We now have to integrate relations (1.3), regarding them as equations in the unknown 
functions &, From the solutions obtained we have to choose those for which passage to the 
limit to the Galilean operator is possible: 

X8' talaz G x,alax, (1.4) 

With crsa = ctss = 0 the most general homogeneous solution of Eqs.(1.3), that satisfies 
condition (1.41, is 

Er = Cja$ czs' z 0 0.5) 

In the cases (c,~~)* + (c~~~)~+ 0, corresponding to the same transformation group (@,c, = 1), 
Eqs.tl.3) also have a non-linear solution, which we shall not discuss. 

The question arises as to whether the problem can be simplified by taking (1.5), not in 
the general form, butwith fixed values of the structural constants that correspond to non- 
isomorphic algebras. The point is that the structural constants can be specialized in dif- 
ferent ways within the same algebra. Different expressions are then obtained for transforn- 
ations of the same group. The question is, which of them to prefer. We cannot in principle 
answer this question without new physical arguments. It is therefore better to keep the dis- 
cussion general until the final results are obtained. This matter will be considered in 
Sect.4. 

&WApS Of motions. To the groups of motions there correspond operators with components 
that satisfy the Killing equations. For Riemann spaces with metric d.+ = aij&&xj these 
equations are 

Here and below, k, 1,m = 1,2,3. 
Substitution of the components of the operators X,(&(l) = 1, &u) = 0), X, ($'*l = 0, &@I = 1), 
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(cm1 + czs2)D # 0 (D = c152c131 - c232c131) (1.6) 

A transformation group does not preserve a metric. With 

D=O (1.7) 

the preserved metric is degenerate: ds2 = (clszdxl - cz31dx,)2. With c131 + czS2 = 0 the metric 

ds2 = - (c132/c231)dz,2 - 2 (c232/c231)dxldx, + dxz2 

is preserved. It is indefinite for D>O and definite for D (0. 

Final transformations. The required transformation group of the geometric coordinate 
and time, which corresponds to operator X8,, is given by the solution of the Cauchy problem 

dx,'/dr = c;&, xi‘ IX=,, = xi (l-8) 

The solution of Eqs.tl.8) can be written as 

Xi' = bij (T)Xj* bij (0) = 6,’ (1.9) 

where Sj' is the Kronecker delta. The inverse transormation is 

xi = bij (-Z)xj’ (1.10) 

The canonical parameter z is usually replaced by the constant velocity V of the motion 
of the body of the reference system K' = {x', t'} relative to the body of the reference 
system K = ix, % which is taken as fixed (Fig.1). The replacement is made in accordance 
with the equation 

4, @)v + b,, (z) = 0 (1.11) 

Law of veZocity transformation. Let &I& = V" be the particle velocity, measured by 
a fixed observer, and let dx’ldt’ = v be the particle velocity in a moving frame of 
reference. Then by 11.9) and (l.lO), 

I,” _ h (-7) V’ + hz (- ~1 = hz (T) - bzz (‘~1 v’ 
bzl (- 7) V’ + bzz (- T) h (T) V’ - h CT) 

(1.12) 

ii 

z / 

Fig.1 

Variation factors of geometric sca'Les and dock behaviour in inertial systems. We fix 
the points x1,1 and the distance Ax = xl- ~2 = 1 in the fixed system K and find the 
value of Ax measured by a moving observer in K' with t,’ = t,‘; on again using (1.9) and (l.lO), 
we find 

1' = Ax’ = h,l, h, = bll-’ (-T) = lb,, (T)b,, (z) - 

bm (z)b,, (Mb,, (4 (1.13) 

We fix the clocks at the point x'l, xl2 of the moving system K'. Let their readings 
be 

, I 
t, , 1, . We find the corresponding readings tl, t,, At = t, - t,, of the clocks in the 

fixed system K. By (1.9) and (l-101, 
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ReZativistic anaZogues of Newton's second law. A Lagrangian description can be given of 
the mechanics controlled by groups of motions of a Riemann space. The construction of the 
dynamic law in this situation presents no difficulties. In other cases, other arguments must 
be used to construct the force transformation law, but we shall not dwell on these. But they 
are not applicable in one-dimensional dynamics. It is therefore natural to confine ourselves, 
as Zhuravlev did previously (see Foundations of Mechanics. Procedural Aspects. Preprint 
251, Institute of problems in Mechanics, Academy of Sciences of the USSR, Moscow, 19851, to 
the simplest hypothesis which is satisfied in one-dimensional classical mechanics (force is 
an invariant). 

We give an analysis below only for the moment interest groups /lo/. 

2. Groups GCU. When Eqs.(1.2) and (1.4) are satisfied, these groups are distinguished 
by the conditions 

The parameter c,, takes all real values apart from the limiting values 0, *co. We can 
rewrite (2.1) as D = (co,- l)fz2/4. 

Using this equation, we find the roots of the characteristic equation of system (1.8) 

h ,," =z I:! (1 * jG)/_ 0 9 

The nature of our future expressions will depend on the sign of the parameter cO. We will 
confine ourselves to the case c0 = a' (a> 0). 

Fig.2 

Transformation of the geometric coordinate and time by (1.9) gives 

The connection (1.11) between the group parameter T and the velocity V is given by 

c+-~.J~ :: (rz3r - -1,V);(c,,' $. A,V) E Q 

with the aid of which we can write transformation (2.2) as 

5’ = cz31 (5 - vt) R-ypU), R = 1/(czs’ + A,V)(c,,’ - A,V) 

t’ = czsl [ - c,,Vz + (ctsl + I&V) t] R-lQ”(Pa) 
(2.3) 

Here we must have cz3r> 0. In future we shall confine ourselves to the most interesting 
siutations of general position when c,~?#O, and the group structural parameter CL is in 
no way specialized. It is clear from (2.l)'that in these cases 

A,_& Y: '!; (a'fz' - 8,") = c~~~c,~* + 0 

Let V, be the lesser and V, the greater of the numbers c,,'/A,, -c,,'/d,. Relations 
(2.3) will then retain their meaning if the velocity V satisfies the conditions 



V< V, or V> V, for V,V,>O 

VI < V < V, for V,V, ( 0 

The domains that correspond to admissible values of V are 
By (1.121, the velocity transformation law is 
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(2.4) 

filled by world lines in Fig.2. 

V” =- [cz31 (V + V) + e,vv'lqc,,' + c,‘VV’) (2.5) 

It is independent of the parameter ct. 
The quantities Vi represent the genus of the limiting velocities of motion, which are 

the same in any inertial frame of reference, and in this sense can be regarded as signal 
propagation velocities. In fact, putting V” = v’ in (2.5), we obtain 

v;,, =- (6, + 2f2)/(2C192) 

From (1.13) and (1.141, we find that the variation factors of geometric scales and clock 
behaviour are 

Comparison of (1.61, (1.7) and (2.1) shows that, if c,#l, the groups Gee do not 
preserve a metric; if c0 -1, the preserved metric is degenerate. When finding general- 
izations of Newton's second law, we regard force, like mass, as an invariant. 

The operators Xii (k =:= 1, 2, 3), continued in velocity and acceleration, are 

X," z.z x1 zz a!&, x,* = x, = 81% 

x,* = x, + (- q3%'2 + 0,s' + C281)a/ax. f (- 3c1,%' + e* - c,,2)x"a/ax" 

The unique invariant of the continued group, dependent on I", is 

x,*&x = 0 Ic = 1, 2, 3 

Assuming that it is linear in the acceleration, we obtain 

$2 r= 2" (I - A,;c’l~~~~)-‘~~-*‘(*~~( 1 f A 1x’/c2 ,‘)-%+I/w 

The required law is 

(2.7) 

Obviously, the domains of admissible values of the velocity 2' are the same as in the 
transformation law (2.3) and relations (2.4). 

3. The Lorentz group. The Lorentz group(G3) is distinguished by the conditions 

jk = 0, $2 = 4u >o (3.1) 

The transformation of space-time is obtained by solving the Cauchy problem (1.1) 

In accordance 
is 

Hence 

2’ = {I [(A. + c131) ear + (h - cnl) rhr] + caslt (ear - e-aT))/(2h) 

t’ = {xc132 (eaT - e-ar) + t [(h - clsl) ear: t_ (h + c131) e-“‘I}/(%) 

With conditions (3.11, the dependence of the parameter on the velocity V 

eti' = [csl + ~~~~~ - h) v]&J + (~~3 i- hf v], h2 = D > 0 

2' = &'(X - Vt)R;', t' = [- c,,~VZ -c_ (casl + 2c,a'V)t] R;' (3.2) 

R1 = v'@,,' + @ + %a') V)(cas' + (cd - h)V) 

(The same result can be obtained from the usual Lorentz transformation by affine 
replacement in the image and pre-image. But then, instead of the structural constants, the 
coefficients of the affine transformation appear in the answer). 

As in the previous case, the velocity transformation law is described by (2.5) (6, -= 2c,,l). 



The signal propagation velocities (velocities of motions which are invariant under the choice 
of inertial system) 

(CIS' j J.) CIZi~ l.,.l’, (i. - (.,31). ((.,:I’ -- h)/c,,’ -- ‘sn~:(‘.l:,~ ,., 

are the same as the values of V which cause the factors under the radical in 13.2) to 
vanish. The domains of admissible velocities are qualitatively the same as shown in Fig.2. 

The variation factors of the geometric scales and clock behaviour in the inertial systems 
are i., H,.(C,:,' "(,,,'I ), i., R, IC~:<~ (Xi) 

In the case of most interest when (.5:I'CJ3J > 0 ) we have 

In the domains (3.4) of admissible values of V, the functions (3.3) have no singularities. 
The Lorentz group preserves an indefinite metric (D>(I). The dynamic law is obtained 

by the classical method 

I>l.l." (1 - 2C,,7"s'/C,,' - C1,~?z'?,~Cpa 1 (II ) (3.5) 

4. Remarks on coordinate forms of transformations and the position of the groups 
GCo (G, > '3 in the general scheme. We have obtained in the last two sections relations 
which characterize the most interesting mechanics of one-dimensional motions of a particle, 
from which Newtonian mechanics is obtained by a passage to the limit. 

These relations contain two or three arbitrary constants, which are combinations of the 
structural constants of the relevant group. 

If no physical arguments can be given, whereby the number of constants can be reduced, 
they all have to be regarded as world constants of two-dimensional space-time. (The particle 
dynamics will naturally depend on them). 

Obviously, in the context of the present statement of the problem, when we can operator 
with only four types of object (Newton's second law, the principle of invariance, the set of 
transformation groups, and the condition for homogeneity of space-time), all the 
possibilities have been exhausted during the above constructions. 

The number of constants might be reduced by a suitable change of variables 

11 rir el. I, $.i- m, 111, d/l "r il- 0 ($.I) 

which preserve the homogeneity of space-time (which is equivalent to replacing the basis in 
the subalgebra (X1,X,)). However, in the case of purely mathematical operation of transition 
(4.1) to a fixed coordinate form, foundations are still needed for regarding .Ilrf,r and not 
2, t, as physical variables. 

These reasons only appear when we impose the extra requirement that Maxwell's equations 
be invariant in vacua under space-time transformations. It can be shown that transformations 
of the groups CJ,G7 and ~'0 (c,] ( 111 of /lo/ do not satisfy this requirement even approximately 
for any coordinate form. The mechanics corresponding to these groups are in contradiction 
to electrodynamics and have therefore been discarded. 

The situation is different for groups G~o(c,>~) and the Lorentz group (~7). We shall 
speak about groups cc' in the next remark. To explain the role of coordinate forms, we shall 
only dwell on the Lorentz transformations. With 

CIP' I). cl:,' i. r, c,32 CSI 1 - Cm: 

relations (3.2) becomes Lorentz transformations, written in the usual coordinate form 

zr' : (.I 1 t) p. I’ > (_r, ‘y + t) p, fj : ,, (I.‘<)?]-‘:* (‘1.2) 
With 

c13l # u> c&,3S > 0 

in accordance with the law of velocity transformations (2.5), the propagation of light (a 
signal) is different in different directions: 1 V,(#I t;I, which can be interpreted as meaning 
that the space is not isotropic. 

Note that this assumption does not contradict experiment, since the error with which the 
velocity of light is measured at the present time is still computed as several hundred metres 
per second. 

The fact that the velocity of light may depend on the direction of propagation was 
assumed by Poincare, Einstein, and Reichenbach, in connection with the problem of measuring 
time and the analysis of the simultaneity of events /ll/. The dependence on the direction of 
the coordinate velocity of light has been discussed in detail in /ll/, whereas the physical 
velocity of light has been regarded as constant. 

Let us return to groups Gc. (co = a?, a >O). It is clear from conditions (2.1) that, if 
t), = 0 (c231 > O), then c,3'/c23' = (afai(2c,,'))'. Assuming for clarity that a/2'(2~231) > 0, under 

the conditions 
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(4.3) 

(c is the velocity of light), we find from transformation (2.3) that 

x’ = (x - vqpx, t’ = (--rV.‘c? + f)fiX 
(4.4) 

x = I(1 - V,c)/(l + V'c)ll~@a) 

Hence, as a + 00 (f? -+O), we obtain the Lorentz transformation (4.2). The dynamic law 
(2.7) then becomes the law (3.5). 

Fig.3 

Let us consider in more detail transformations (4.4) of 
groups Gca and some of their corollaries, assuming that the 
values of the parameter e ~~ 3 (a>O) 

Under conditons (4.3: -_a. 
are sufficiently large. 

, relations (2.6) become 

a., = hl = fix 

These functions are shown by the broken curve of Fig.3. 
The continuous curve is the similar graph for the Lorentz group. 

If we pass to four-dimensional space-time, by defining the 
transformation corresponding to (4.4) of the other two coordi- 
nates by 

Y' = YX, z' = .2x (4.5) 

the following can be seen. As distinct from Lorentz transform- 
ations, (4.4) and (4.5) do not preserve the pseudo-Euclidean 
metric clP = x2ds2, but preserve the light cone 

d? ES dP - (d2 + dy* + d2)/c’ = 0 

Consequently, Maxwell's equations are invariant under these transformations. (In the 
four-dimensional case, the parameter a defines the similitude factor). In short, these 
transformations differ by as little as desired from the Lorentz transformation (for large a), 
admit of a passage to the limit to the Galilean (as c+ oo), and preserve Maxwell's 
equations. 

There are considerable qualitative differences between the properties of the relevant 
space-time continua, no matter how close the properties are quantitatively. The differences 
lie in the dependence of the properties of the scales and clock behaviour on the sign of 
their velicity of motion with respect to a fixed observer (violation of parity) and the 
dependence of the body cross-sections on the velocity (see (4.7)). 

5. Particle inertial motions controlled by GaliZean, Lorents, and conformal 
transfomnation groups. In the previous sections we have mainly been concerned 
with one-dimensional dynamic models. It has been said that the three-dimensional models of 
motion, controlled by groups of dimensionality 10 (or higher) are more interesting. In the 
present section, it is in this full-dimensional statement that we consider one of the primary 
problems of particle dynamics, namely, the construction of the inertial motions that are 
controlled, in the sense of the invariance principles /l, 2/, by the most interesting 
transformation groups. We propose a method of solving such problems. It is applicable to the 
groups of Galilean, Lorentz, and conformal, transformations. We will describe in detail the 
properties of the conformally invariant particle motions in both the sub- and super-light 
domains. 

A study of the inertial particle motions is of the first importance for two reasons: 
first, these motions are at the basis of the invariant definition of inertial reference 
systems, are second, they serve as an important guide for constructing dynamic laws. 

Formulation of the problem and the result. By a law of particle motion we shall mean, as 
usual, the time dependence of the particle coordinates and some set of initial conditions. 
If the number of conditions is large enough, the given transformations will preserve a wide 
class of motions. If, on the other hand, there are too few conditions, there may be no 
motions at all which are preserved by the group. The cases when it is possible to introduce 
just as many initial conditions as are needed to obtain a unique law of motion are 
interesting; the concreteness of the law strengthens the confidence in its likelihood and 
facilitaties its experimental verification. 

We shall seek the motions which depend on the initial position, velocity, and 
acceleration of the particle (this is stipulated by the number of parameters (15) of the 
widest of the transformation groups, namely, the conformal ones, which ensures a unique law 
of inertia) 

xh. = (Pk (t, t,; zl”, %?‘, &9”; VI. Up, u,; WI. w2, WI) (5.1) 



which is transformed into itself 

by all the transformations of the group. Here, Q are the Cartesian coordinates of the 
particle, and +, LL~ are the projections of its velocity and acceleration at the initial 
instant to. 

The method given below leads to the following result. 
The most general laWS of particle motion of this class, which are invariant under 

Galilean, Lorentz, and conformal, transformations, are 

(3.2) 

For the Galilean group, b is an arbitrary 

For the Lorentz group, b is a function of 

WZ , e = 2: liklfik, which satisfies the 
R 

equations 

fc is the velocity of light). 
For the conformal group 

the variables w,= xIu",- 
k 

(5.4) 

In (5.4), we have to put the lower siqn in front of the radical when o,* > 0, and the _ _ 
upper sign when wr* < 0. 

The conformally invariant motions satisfy the vector differential equation 

dW/dt :zz - 3 (V. VV)(cZ - V*)-’ W 

where Vand W are the velocity and acceleration at the current instant, and (V, w 
their scalar product. 

(5.5) 

‘f is 

We omit the proofs of (5.2)-(5.5). 

CoroZZary. 10. There are no invariant particle motions, dependent only on the 
position. 

initial 

2". The conformally invariant motions uniquely define the initial positions, velocity, 
and acceleration. 

3O. When there is no dependence on the initial acceleration (b=O) the motions which 
are invariant under transformations of the Galilean and Lorentz groups are uniquely defined. 
This law of inertia is Galilean. 

The producedwe for solving the probhz. In accordance with the statement of the problem, 
the required law of motion (5.1) describes the invariant manifold of the given transformation 
group, continued onto the chosen set of initial data. 

The invariant manifolds are best evaluated by using the Lie algebra instead of the group 
t/12/, p.178). 

The right-hand sides 'pr of Eqs.(5.1) are evaluated from conditions 

xt*cl’, jr = 0, a, s Zk - qJk, r : tDk = 0 

2 :- 1, . ., n; k = I, 2, 3 

Each of the basis operators X* of the continued algebra can be expressed in terms of 
the corresponding operators of the basic algebra 

.Y : &a/ark + @jdt 

by the relations 



x*=x+%,” .&++E 
k 

-$+Ok” $+rp” & 
h k 

(%k”. f”, ?k', ckO are the result of substituting the initial conditions into the functions gk, 

5, nh.. <k 

Calculations using (5.6) present no essential difficulties and lead to the required 
result. This method has advantages over others: it is applicable for any transformation 
groups (and not just for groups of motions of a Riemann space) which are given by their Lie 
algebra; it gives the law of motion in the final [integrated) form, and it does not require 
an explicit knowledge of the final transformations of the group. 

Kinematics of confornd~y invariant particle motions. Invariance under conformal 
transformations, among which are included Lorentz transformations, plays an important role 
and has been used more than one in physics, see e.g., /13f. This is becuase conformal 
transformations preserve Maxwell's equations in vacua /14f so that they must somehow be 
connected with the fundamental properties of space-time, and notably, with the law of 
inertia. 

Let us list some general properties of conformally invariant motions. 
1". The motions are performed with both sub- and super-light velocities. 
2". If the particle initial velocity and acceleration are collinear, w = hv, the 

trajectories of motion in geometric space (2,, X9. x3} are straight lines. Such motions 
are called relativistic uniformly accelerated motions. 

r/$6 v=u-const ifI u 

u<c v-0 
Fig.4 Fig.5 

V-c et u 

(ICE 

Fig.6 

UJ U n 

u>c V--W 

Fig.7 

Fig.8 

Fig.9 

3O. If the initial velocity and acceleration are not collinear (w*Cr.v), the trajec- 
tories in the gometric space are plane second-order curves, which lie in the plane defined 
by the vectors v andw; in the sublight domain they are unbounded arcs of hyperbola, while 
in the superlight domain they are unbounded or finite arcs of a hyperbola, parabola, or 
ellipse. (The sublight motions were given earlier in /15/). 

40. Depending on the initial conditions, the particle can either move away to infinity 
with velocity V-+c as t-+0+ or else the motion terminates in a finite time at a 
finite point of space with velocity V-t 00 [this can only occur if o>c). 

5". Given the initial velocity u>c , the type of trajectory and the kind of motion 
are completely defined the angle Y between the initial velocity and acceleration vectors, 
i.e., they depend on the relation between Y and the critical angle Yo, where 

eos y0 =-- 111, 0 <y*< nl2 
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Let us describe typical situations in more detarl. 
1) w=mO. Uniform rectilinear motion with constant velocity V !' (1' ', ") (Fig.41 
2) W == hv. 0 < I.<: C, A;_> 0. The motion is rectilinear, the velocity V increases mono- 

tonically, linl 1. : c as I** co (Fig.5). 

Fig.10 Fig.11 

Fig.12 

3) w =av, O<U<C, h<O. The motion is rectilinear. The velocity decreases to 
zero, then, changing sign, it increases monotonically, lim V = c as t*+ m (Fig.6). 

4) w=hv, v>c, x>o. The motion is rectilinear. It breaks off at the instant 

at a finite point of space. The velocity increases monotonically, 

?Lz :F;&J;;:$);;*;< O,(Fig;;;*motion is rectilinear. 
The velocity decrease monotonic- 

ally, lim V -r as t*-+ m (Fig.8). 
6) v< c, E = (u, w)> 0. The trajectory is a branch of a hyperbola which does not 

contain the vertex. On moving away, the particle approaches the asymptote without limit. 
The velocity increases monotonically, lim V- c as t*+ o. (Fig.9, right-hand point). 

7) o<c, (v, w) < 0. The trajectory is an unbounded arc of a hyperbola. The particle 
passes through the vertex, then, on moving away, it approaches the asymptote without limit. 
The velocity decreases, then increases monotonically, limV=c as ~*+cc (Fig.9, 
the left-hand point). 

8) v>c, - Yo<Y<Yo. The motion is over a bounded arc of a hyperbola with mono- 
tonically increasing velocity, then breaks off at the instant t* = t,* of reaching the 
vertex, lim Ii- 00, as t* - t** (Fig.10, the upper point). 

9) v>c, n--y,<y<n+Y,. The motion is over an unbounded arc of a hyperbola from 
the vertex with monotonically decreasing velocity lim V=c as t*+ Co (Fig.10, the 
lower point). 

10) v>c, Y = Yo, or y = 2n - yO. The motion is over a bounded arc of a parabola 
with monotonically increasing velocity, and breaks off at the instant t*=t* * of reaching 
the vertex, lim V = o. as t, -+ t** (Fig.11, the upper point). 

11) v> C, y = n - yO, y = n + yO. The motion is over the branch of a parabola from the 
vertex with monotonically decreasing velocity, lim V=C as t*- 00 (Fig.11, the lower 
point). 

12) L'> c, n/2<y<n--Yy,, Jr + y” < y < 3nl2. The motion is over an arc of an ellipse. 
The particle approaches the minor semi-axis with decreasing velocity, and after intersecting 
it the motion continues in the previous direction with monotonically increasing velocity. 
The motion stops at the instant t,* of intersecting the major semi-axis, lim I/ : 00 as 
t* + t,* (Fig.12, the left-hand point). 
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13) u > c, yo < y < xi?, (3:2)x < y < 2n - yo. The motion is over the arc of an ellipse 

from its intersection with the minor semi-axis with monotonically increasing velocity. The 
motion stops at the instant t* = t,* of intersecting the major semi-axis, lim I/ = co as 

t* + t** (Fig.12, the right-hand point). 

On proving the properties of c~nfor~zz~ invariant motions. The trajectories. We take 
the point (xl'- xc. z3') as the origin, the Ox axis along the initial acceleration w, and the 
Oyaxis in the plane of the vectors v, w (if w =hv, the trajectory is obviously a straight 
line). We obtain 

X1 = (q* i: y'Ti,)'i~, X2 : r*t+, ,T3 = 0 
(5.i) 

Hence 

(5.8) 

(3.!1) 

The types of trajectory depends on the sign of f% -I v2 sia v t or what amounts to the same 
thing, on the sign of e* - W,*lFZ (y is the angle between the vectors v and w): if the latter 
expression is greater than zero, the trajectory is a hyperbola, if it is equal to zero, the 
trajectory is a parabola, and if less than zero, it is an ellipse. 

Using Eqs.(5.7)-(5.9), we can find the point on the trajectory at which the motion 
stops in the superlight domain, given suitable initial conditions, and also the disposition 
of the trajectory relative to the direction of the initial acceleration. For this, we only 
need to note that the motion stops when R, vanishes, i.e., at the point of intersection of 
the trajectory with the Or,* axis, and that the vector w is along the O~~*axis. 

The initial positions of the particle on the trajectory and its subsequent motion are 
easily found from relations for the running velocity and acceleration which follows from 
(5.2): 

and from the radius of curature p of the trajectory for the running position of the particle 

g = p&3(0,* + cq-a&'~ 

It is important to take account of the following factors here: 
1) the particle position and its velocity and acceleration are defined only for R,>o; 
2) if o<c we have R,>O for all tag ]-w.w[; 
3) if c;>c, then f?, has two zeros: 

tt* = q* (E + 11?1/2)-1, t,* = e** (E - Wlq-1 

which are either both positive or both negative, if E? - W,W > 0 ; while they are of different 
signs if 82.- o,*w~<O; if E* - WHEW* = 0 the function A, has one zero t* = ol*1(2E); 

4) the particle accelerations remain parallel to one another at any positions on the 
trajectory. Their common direction is the same as that of the axis of symmetry of the 
trajectory in the sublight domain, and perpendicular to it in the superlight domain. If 
the trajectory is an ellipse, the acceleration is directed along the minor axis; 

5) in the superlight domain the motion can only terminate at the vertex of the trajec- 
tory; 

6) the radius of curvature of the trajectory increases or decreases along with I?,. 
To sum up, by using Klein's approach, based on a preliminary sampling of the groups 

and a study of their hierarchies, we can give a uniform logical treatment of the problem of 
constructing mechanical models and arrive at expressions which can be checked 
experimentally. It is thus worth gaining experience in constructing models similar to 
those in the present paper* 

The authors thanks V.V. Rumyantsev, V.F. Zhuravlev, and V.V. Kozlov for valuable 
discussion of some of the fundamental topics touched on in this paper. 
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THE ENTRY OF A WEDGE INTO AN INCOMPRESSIBLE FLUID'$ 

B.S. CHEKIN 

The similarity problem of the entry of a rigid wedge into an ideal 
weightless incompressible fluid occupying a half-space is studied. The 
difficulty is that a non-linear boundary conditon has to be satisfied on 
the free surface of the fluid, whose position is unknown and has to be 
found during the solution. Three types of fluid motion are considered: 
flow past the wedge without break-away, the case when one wedge face is 
not wetted (a semi-infinite plate), and the intermediate case, when a 
cavity forms on one face. The problem amounts to solving a non-linear 
system of integral equations. A method of solving this system is given 
for the flow without break-away and the plate case. Examples of 
calculations are given. The results for thin and thick wedges are 
compared with approximate data. 

The penetration of a wedge into a fluid was first studied in /l/. 
In /2/ the linear problem of normal collision with a water surface was 
solved. An approximate solution can be found e.g., in /3-5/. In /6/ a 
solution was obtained for the special case the entry of a wedge into a 
fluid. In /7/ the problem of normal wedge entry was solved in the exact 
non-linear statement, and the same problem was considered in /8/. The 
method below is based on that of /7/. 

1. Let the wedge M,fif,M, move with constant velocity V, (Fig.11 and enter a fluid 
which occupies the lower half-space )' -< 0 at the initial instant t=o and is at rest. 
At an instant t> 0 the distorted fluid boundary N,M,M,M,N, can have the shape shown in 
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